Unexpected Novel Pheophytin Peroxides from the Leaves of Biden pilosa

by Tzong-Huei Lee $^a),$ Chung-Kuang Lu $^b),$ Yueh-Hsiung Kuo $^c)^d),$ Jir-Mehng Lo $^e),$ and Ching-Kuo Lee $^{*a})$

^a) Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan (phone:+886-2-27361661; fax: +886-2-23772265; e-mail: cklee@tmu.edu.tw)

^b) National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan

^c) Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

^d) Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 404, Taiwan ^e) Industrial Technology Research Institute, Biomedical Engineering Research Laboratories,

Hsinchu 310, Taiwan

Two new pheophytins, bidenphytins A (1) and B (2), with peroxide functionalities on ring *E*, were isolated from *Biden pilosa* LINN. var. *radiata* SCH. BIP., a popular Taiwanese folk medicine. Also isolated were the following six known compounds: pheophytin *a* (3), (13^2R) -13²-hydroxypheophytin *a* (4), (13^2S) -13²-hydroxypheophytin *a* (5), (13^2R) -13²-hydroxypheophytin *b* (6), (13^2S) -13²-hydroxypheophytin *b* (7), and aristophyll-C (8). Their structures were elucidated by spectroscopic methods (UV, IR, 1D-and 2D-NMR) and by mass spectrometry (HR-FAB-MS). Possible biosynthetic pathways for 1 and 2 are proposed.

Introduction. – Biden pilosa LINN. var. radiata SCH. BIP. (Compositae) is a worldwide distributed annual or perennial herb that became rampant in Taiwan only over the past two decades [1]. The whole plant and aerial parts are being used in various folk medicines (or as a popular ingredient in herbal tea) for their anti-inflammatory, antiseptic, liver-protective, blood-pressure-lowering, and hypoglycemic effects [2]. Previous phytochemical examinations on the constituents of *B. pilosa* afforded an acetylacetone [3], polyacetylenes [4], flavonoids [5–7], and a diterpenoid [8]. However, there has been no report on its chlorin-like constituents to date.

Chlorin (=2,3-dihydroporphyrin) and its derivatives – including chlorophyll, pheophytin, chlorophyllin, pheophobide, and many other closely related analogues, either found in most higher plants, algae, and even bacteria – are interesting compounds for the development of new drugs in photodynamic therapy (PDT), since they strongly absorb light above 670 nm, thereby enabling deeper penetration of radiation through tissue [9]. Among them, some naturally occurring entities have been previously shown to be effective photosensitizing agents, both *in vitro* and *in vivo* [10]. However, these compounds, considering their dihydro and tetrahydro reduction states, can be readily oxidized back to the parent porphyrin by a variety of oxidants, *e.g.*, ferric salts, I_2 , or molecular ground-state oxygen (3O_2), which gives rise to loss of their long-wavelength absorption bands [11]. This potential lack of stability promoted us to search other chlorin-like chromophores from natural sources assumed to contain abundant

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

chlorine derivatives, as assessed from the UV spectra of the corresponding hexane extracts in preliminary screenings.

Herein, we report a phytochemical examination of the hexane-soluble extract of the leaves of *B. pilosa*, which led to the isolation and identification of two novel pheophytins, compounds 1 and 2, together with six known compounds, 3-8.

Results and Discussion. – Compound **1** was optically active $([\alpha]_D^{25} = -44.6)$, and exhibited UV absorption bands at 404, 505, 534, 612, and 669 nm, indicating a chlorophyll derivative [12]. HR-FAB-MS Analysis showed the $[M + H]^+$ ion at m/z887.5684 (calc. 887.5687), in accord with the molecular formula $C_{55}H_{74}N_4O_6$. The prominent differences in the ¹H-NMR spectrum of **1** (*Table*), as compared with that of pheophytin *a* (**3**) [13], were the presence of one extra *singlet* at $\delta(H)$ 7.23 (H–C(13¹)) as well as the absence of a *singlet* at $\delta(H)$ 6.26 ((H–C(13²)). These differences were also reflected in the ¹³C-NMR spectrum (*Table*), in which the C=O resonance at $\delta(C)$ 189.6 (C(13¹)) and a tertiary C-atom at $\delta(C)$ 64.7 (C(13²)) in **3** were replaced by a methine at $\delta(C)$ 79.0 and a quaternary C-atom at $\delta(C)$ 98.9, respectively, accompanied with significant shifts of C(13) (δ (C) 129.0 vs. 113.3), C(14) (150.0 vs. 163.4), and C(15) (105.2 vs. 134.6), probably caused by some substituent or conformational changes nearby. To account for these differences, both $C(13^1)$ and $C(13^2)$ of 1 must be oxygenated, and a C-O-O-C functionality between them should be formed to fit these changes and match the molecular formula.

Position	1		2	
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$
1	143.0		141.2	
2	131.6		131.5	
2^{1}	12.0	3.36(s)	12.0	3.41(s)
3	136.4		136.2	
3 ¹	128.9	7.95 (dd, J = 17.8, 11.5)	128.9	7.93 (dd, J = 17.8, 11.6)
3 ²	122.7	6.15 (d, J = 11.5),	122.6	6.13 (d, J = 11.6),
		6.28 (d, J = 17.8)		6.28 (d, J = 17.8)
4	136.2		136.0	
5	99.1	9.37 (s)	99.5	9.42(s)
6	155.9		155.6	
7	136.3		136.4	
7^{1}	11.2	3.20(s)	11.1	3.16(s)
8	145.5		145.4	
8^{1}	19.5	3.64 - 3.70 (m)	19.4	3.60 - 3.66 (m)
8 ²	17.5	1.66(t, J = 7.7)	17.5	1.64(t, J = 6.5)
9	150.0		149.9	
10	104.8	9.57 (s)	104.0	9.66(s)
11	137.3		138.7	
12	131.5		131.4	
12 ¹	12.2	3.76(s)	12.4	3.87(s)
13	113.3		111.3	
13 ¹	79.0	7.23(s)	102.0^{a})	
13 ²	98.9		100.5 ^a)	
13 ³	170.3		170.9	
13 ⁴	53.0	3.51(s)	54.1	3.76(s)
14	163.4		161.0	
15	134.6		149.9	
16	162.5		166.4	
17	52.6	4.50 - 4.56(m)	53.7	4.07 - 4.13 (m)
17 ¹	30.6	2.25 - 2.31 (m),	31.3	1.85 - 1.91 (m),
		2.59 - 2.65(m)		2.57 - 2.63 (m)
17 ²	30.8	1.97 - 2.03(m),	32.2	2.18 - 2.24(m),
		2.43 - 2.49(m)		2.46 - 2.52(m)
17 ³	173.1		173.3	
18	50.5	4.45 (q, J = 7.3)	50.2	4.45 (q, J = 7.1)
18 ¹	22.6	1.56(d, J = 7.3)	22.6	1.61 $(d, J = 7.1)$
19	172.7		171.1	
20	93.2	8.48(s)	93.9	8.70(s)

Table. ¹H- and ¹³C-NMR Data of 1 and 2 (without the signals of the phytyl moiety). Recorded at 500/ 125 MHz, resp., in CDCl_3 ; δ in ppm, J in Hz.

Assignment may be interchanged.

The partial structure of rings *E* and *F* of **1** was further confirmed by the following key HMBC long-range correlations: $H-C(13^1)$ to $C(13^2)$, $C(13^3)$, C(14), and C(15)(*Figure*). Considering the configuration of pheophytin derivatives, it is known that $HO-C(13^2)$ exhibits a prominent deshielding effect on H-C(17) ($\delta(H)$ 4.50–4.56) when located on the same side of the porphyrin ring [14][15]. In the NMR spectrum of **1**, the signal for H-C(17), indeed, appeared at $\delta(H)$ 4.50–4.56, which indicated that H-C(17) and the C-O-O-C moiety were *cis*-oriented. The absolute configurations at both $C(13^1)$ and $C(13^2)$ were, thus, analogously assigned as (*R*) by spectroscopic correlation with pheophytin *a* (**3**) [13]. From these data, the structure of **1** was identified as $13^1, 13^2$ -peroxypheophytin a^1), and named *bidenphytin A*.

Figure. Selected HMBC $(H \rightarrow C)$ correlations of **1**

Compound **2** was optically active $([a]_{D}^{25} = -5.4)$ and had the molecular formula $C_{55}H_{74}N_4O_7$, as deduced by HR-FAB-MS and ¹³C-NMR spectroscopy (*Table*). The ¹Hand ¹³C-NMR spectra of **2** were very similar to those of **1**, except that $C(13^1)$ of **2** was shifted from $\delta(C)$ 79.0 to lower field ($\delta(C)$ 102.0; interchangeable with $\delta(C)$ 100.5), indicating that the methine group at $C(13^1)$ of **1** was replaced by an OH group in **2**, in accord with the change in the molecular formulae. Further analysis of the 2D-NMR data, including COSY, NOESY, HSQC, and HMBC, allowed the complete assignment of the ¹H- and ¹³C-NMR spectra of **2**, as illustrated in the *Table*. Accordingly, compound **2** was identified as 13¹-hydroxy-13¹,13²-peroxypheophytin *a*, and named *bidenphytin B*.

The six known compounds, pheophytin a (3) [13], (13²R)-13²-hydroxypheophytin a (4) [16], (13²S)-13²-hydroxypheophytin a (5) [16], (13²R)-13²-hydroxypheophytin b (6) [17], (13²S)-13²-hydroxypheophytin b (7) [17], and aristophyll-C (8) [18], were identified by comparison of their ¹H- and ¹³C-NMR as well as EI-MS data with those reported in the literature.

Bidenphytins A (1) and B (2), two rare four-membered peroxide-containing pheophytins, might be readily produced *via* a series of conventional chemical reactions in biosynthetic systems from pheophytin a (3) as starting material. In the proposed pathway (*Scheme*), 3 is reduced, dehydrated, and then oxidized by atmospheric oxygen (*i.e.*, by triplet oxygen; ${}^{3}O_{2}$) to afford 1 [19]. An alternative route can also be proposed, in which 2 is generated by a series of electron-transfer reactions in the presence of ${}^{3}O_{2}$ from 3.

¹⁾ For systematic names, see Exper. Part.

Although novel pheophytin derivatives have been obtained and cumulated from natural sources [12][20], the biosynthetic pathway of pheophytins is still poorly understood. To disclose the biosynthesis of these class of compounds, more pheophytin-like intermediates and labeling experiments will be required.

Financial support by the National Natural Science Foundation of the Republic of China is gratefully acknowledged.

Experimental Part

General. HPLC: Hitachi L-7000 system with Merck LiChrospher Si (7 µm, 10 × 250 mm) semiprep. column. Column chromatography (CC): silica gel 60 (70–230 mesh; Merck). Optical rotations: Jasco DIP-1000 digital polarimeter. IR Spectra: Nicolet Magna-550 spectrophotometer; KBr pellets; in cm⁻¹. UV Spectra: Shimadzu UV-1601PC spectrometer; λ_{max} (log ε) in nm. ¹H- and ¹³C-NMR Spectra: Bruker AM-300 (at 300/75 MHz, resp.) or DMX-500SB spectrometers (at 500/125 MHz, resp.); in CDCl₃ soln.; δ in ppm rel. to Me₄Si, J in Hz. MS: Finnigan MAT-95S and Jeol SX-102 mass spectrometers; in m/z (rel. %).

Plant Material. The leaves of *Biden pilosa* L. var. *radiata* SCH. BIP. were collected in Tainan, Northern Taiwan, in June 2003, and identified by Mr. *Nien-yung Chiu*, Institute of Chinese Pharmaceutical Science, China Medical College. A voucher specimen (200106BP2) has been deposited at the Taipei Medical University, Taipei, Taiwan.

Extraction and Isolation. The air-dried leaves of *B. pilosa* (4.5 kg) were successively extracted with hexane, AcOEt, and MeOH (3×60 l) at r.t. Evaporation of the org. solvent from each soln. under reduced pressure gave the corresponding hexane-soluble (62 g), AcOEt-soluble (72 g), and MeOH-soluble (49 g) extracts. The hexane-soluble part was absorbed on 70 g of SiO₂, and then subjected to CC (800 g SiO₂; hexane/AcOEt gradient) to afford five fractions: *Fr. 1* (hexane/AcOEt 10:1.5; 3000 ml), *Fr. 2* (hexane/AcOEt 10:2; 3200 ml), *Fr. 3* (hexane/AcOEt 10:3; 3500 ml); *Fr. 4* (hexane/AcOEt 10:3.5; 3700 ml), and *Fr. 5* (hexane/AcOEt 10:4; 2400 ml). Repeated purification of *Fr. 1* (4.6 g) by CC

(SiO₂; hexane/AcOEt 10:1) followed by HPLC purification afforded **3** (26 mg). *Fr.* 2 (6.7 g) was subjected to CC (SiO₂; hexane/AcOEt 10:1.6) followed by HPLC to afford **4** (10 mg) and **5** (20 mg). *Fr.* 3 (2.6 g) was purified by CC (SiO₂; hexane/AcOEt 10:2.1) followed by HPLC to afford **1** (3 mg). *Fr.* 4 (4.9 g) was subjected to CC (SiO₂; hexane/AcOEt 10:2.9) followed by HPLC, which afforded **6** (4 mg) and **7** (7 mg). *Fr.* 5 (3.5 g) was purified by CC (SiO₂; hexane/AcOEt 10:3.2) followed by HPLC to provide **8** (2 mg) and **2** (11 mg).

Bidenphytin A (= Methyl (1E,3R,68,11Z,16Z,20Z,23S,24S)-18-Ethenyl-13-ethyl-14,19,23,28-tetramethyl-24-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-4,5-dioxa-9,25, 26,27-tetraazaheptacyclo[20.2.1.1^{7,10}.1^{12,15}.1^{17,20}.0^{2,8}.0^{3,6}]octacosa-1,7,10(28),11,13,15(27),16,18,20,22(25)decaene-3-carboxylate; **1**). UV (MeOH): 404, 505, 534, 612, 669. [α]²⁵_D = -44.6 (c = 0.76, CHCl₃). IR (neat): 3331, 2960, 2920, 2853, 1732, 1698, 1469. ¹H- and ¹³C-NMR: see *Table*. HR-FAB-MS (pos.): 887.5684 ([M + H]⁺, C₅₅H₇₅N₄O⁺₆; calc. 887.5687).

Bidenphytin B (= Methyl (1E,3R,6S,11Z,16Z,20Z,23S,24S)-18-Ethenyl-13-ethyl-6-hydroxy-14,19,23,28-tetramethyl-24-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-4,5-dioxa-9,25,26,27-tetraazaheptacyclo[20.2.1.1^{7,10}.1^{12,15}.1^{17,20}.0^{2,8}.0^{3,6}]octacosa-1,7,10(28),11,13,15(27),16, 18,20,22(25)-decaene-3-carboxylate; **2**). UV (MeOH): 414, 521, 557, 601, 655. [a] $_{25}^{25}$ = -5.4 (c = 0.98, CHCl₃). IR (neat): 3320, 2953, 2924, 2869, 1725, 1699, 1466. ¹H- and ¹³C-NMR: see *Table*. HR-FAB-MS (pos.): 903.5657 ([M + H]⁺, C₅₅H₇₅N₄O^{\ddagger}; calc. 903.5636).

REFERENCES

- [1] 'Flora of Taiwan', 2nd edn., Ed. T. S. Huang, Taipei, Taiwan, 1998, Vol. 4, p. 870.
- [2] L. W. Wu, Y. M. Chiang, H. C. Chuang, S. Y. Wang, G. W. Yang, Y. H. Chen, L. Y. Lai, L. F. Shyur, *Pharm. Res.* 2004, 21, 2112.
- [3] J. K. Kumar, A. K. Sinha, Nat. Prod. Res. 2003, 17, 71.
- [4] L. Alvarez, S. Marquina, M. L. Villarreal, D. Alonso, E. Aranda, G. Delgado, *Planta Med.* 1996, 62, 355.
- [5] M. G. L. Brandao, C. G. C. Nery, M. A. S. Mamao, A. U. Krettli, Phytochemistry 1998, 48, 397
- [6] J. Wang, H. Yang, Z.-W. Lin, H.-D. Sun, Phytochemistry 1997, 46, 1275.
- [7] J. Wang, H. Yang, Z.-W. Lin, H.-D. Sun, Chin. Chem. Lett. 1997, 8, 599.
- [8] M. Zulueta, A. Carmelita, M. Tada, C. Y. Ragasa, Phytochemistry 1995, 38, 1449.
- [9] W. G. O'Neal, W. P. Roberts, I. Ghosh, H. Wang, P. A. Jacobi, J. Org. Chem. 2006, 71, 3472.
- [10] D. S. Lim, S. H. Ko, W. Y. Lee, J. Photochem. Photobiol., B 2004, 74, 1.
- [11] L. Ma, D. Dolphin, Can. J. Chem. 1997, 75, 262.
- [12] T. S. Wu, Y. L. Tsai, P. L. Wu, F. W. Lin, J. K. Lin, J. Nat. Prod. 2000, 63, 692.
- [13] S. L. Schwikkard, D. A. Mulholland, A. Hutchings, Phytochemistry 1998, 49, 2391.
- [14] Y. Nakatani, G. Ourisson, J.-P. Beck, Chem. Pharm. Bull. 1981, 29, 2261.
- [15] M. Kobayashi, K. Ishida, S. Terabayashi, H. Mitsuhashi, Chem. Pharm. Bull. 1991, 39, 3348.
- [16] A. Matsuo, K. Ono, K. Hamasaki, H. Nozaki, Phytochemistry 1996, 42 427.
- [17] Y. Nakatani, G. Ourisson, J. P. Beck, Chem. Pharm. Bull. 1981, 29, 2261.
- [18] Y.-Y. Chan, Y.-L. Leu, T.-S. Wu. Chem. Pharm. Bull. 1999, 47, 887.
- [19] P. H. Hynninen, K. Hyvärinen, J. Org. Chem. 2002, 67, 4055.
- [20] H. H. Cheng, H. K. Wang, J. Ito, K. F. Bastow, Y. Tachibana, Y. Nakanishi, Z. Xu, T. Y. Luo, K. H. Lee, J. Nat. Prod. 2001, 64, 915.

Received August 15, 2007